凈水廠干化鋁污泥對Pb2+和Cu2+的吸附
重金屬離子Pb2+和Cu2+是工業(yè)廢水中的主要有毒污染物之一,其不能自行分解且具有較高的毒性,排放至自然環(huán)境后會(huì)對動(dòng)植物、水生生物造成持久性危害。吸附法去除水中重金屬離子具有操作簡單、效率高和容量大等優(yōu)點(diǎn),且被吸附的重金屬污染物可通過解吸脫附回收利用,是一種具有應(yīng)用前景的水處理方法。目前已有學(xué)者利用活性炭、生物炭、石墨烯和氧化鋁等材料吸附處理水中的重金屬,但這些材料制作成本高,處理費(fèi)用昂貴。因此,尋求一種廉價(jià)且穩(wěn)定的吸附材料成為目前吸附法去除水中重金屬主要的研究方向。
凈水廠污泥是凈水廠在水處理過程中產(chǎn)生的化學(xué)污泥,以無機(jī)成分為主,主要含土壤顆粒、金屬氫氧化物、腐殖質(zhì)等物質(zhì)。由于凈水廠污泥中含有大量鋁離子,污泥表面存在各種形狀和尺寸的孔洞且孔隙豐富,活性強(qiáng),活性吸附點(diǎn)多,若能將凈水廠污泥用作吸附材料,不僅可以節(jié)省凈水廠運(yùn)行成本,還能實(shí)現(xiàn)凈水廠污泥的環(huán)境友好處置。近年來,已有學(xué)者利用凈水廠污泥吸附處理水中的磷、重金屬Cd2+等,但對于重金屬Pb2+和Cu2+的吸附研究較少。本研究以凈水廠干化鋁污泥為吸附材料,研究了污泥投加量、pH、Pb2+和Cu2+初始濃度、吸附時(shí)間和溫度對吸附效果的影響,并通過吸附等溫線、吸附動(dòng)力學(xué)模型的擬合以及熱力學(xué)分析,探討了凈水廠干化鋁污泥對Pb2+和Cu2+的吸附特性。
一、材料與方法
1.1 試驗(yàn)材料與儀器
試驗(yàn)污泥取自太原市某凈水廠,為凈水過程中使用聚合氯化鋁(PAC)后添加陰離子型聚丙烯酰胺(PAM)形成的干化鋁污泥。當(dāng)日將自然干化的鋁污泥餅帶至實(shí)驗(yàn)室,碾碎后立即在105℃下干燥1h,再深度磨碎過0.25mm篩,然后裝入玻璃瓶中,密封并于室溫下保存待用。
重金屬溶液配制:分別將PbCl2(分析純)和CuCl2(分析純)溶于超純水中,配制一定濃度的Pb2+和Cu2+溶液。
試驗(yàn)儀器:DHZ-D恒溫振蕩器,蘇州培英實(shí)驗(yàn)設(shè)備有限公司。DHG-9145A鼓風(fēng)干燥箱,上海一恒科學(xué)儀器有限公司。TAS-986原子吸收分光光度計(jì),北京普析通用儀器有限責(zé)任公司。pHS-3EpH計(jì),上海儀電科學(xué)儀器股份有限公司。BDPV-II-20P超強(qiáng)型超純水機(jī),南京權(quán)坤生物科技有限公司。
1.2 試驗(yàn)方法
取100mL一定濃度的重金屬溶液置于250mL錐形瓶中,向瓶中投加一定質(zhì)量的干化鋁污泥。置于恒溫振蕩器中,控制一定溫度也除特殊說明外,溫度均為(20±1)℃,在140r/min下振蕩反應(yīng)一定時(shí)間。取樣,經(jīng)針頭濾器(0.45μm)過濾后,測定濾液中重金屬的濃度。試驗(yàn)過程中,采用稀鹽酸和稀NaOH溶液調(diào)節(jié)pH。各試驗(yàn)重復(fù)進(jìn)行3次,結(jié)果取平均值。
1.3 分析方法
Pb2+和Cu2+的濃度采用直接進(jìn)樣火焰原子吸收光譜法[ASTM-D3559(Pb)、ASTM-D1688(Cu)]進(jìn)行測定。
二、結(jié)果與討論
2.1 干化鋁污泥投加量對吸附效果的影響
在Pb2+和Cu2+質(zhì)量濃度分別為160、100mg/L,溶液pH=4,吸附時(shí)間為6h的條件下,考察干化鋁污泥投加量對吸附效果的影響,結(jié)果見圖1。
由圖1可知,隨著干化鋁污泥投加量的增加,Pb2+和Cu2+去除率均呈先逐漸升高后趨于平緩的變化趨勢。當(dāng)污泥投加量為0.14g時(shí),Pb2+去除率最高,達(dá)到83.57%,吸附量為95.51mg/g。當(dāng)污泥投加量為0.10g時(shí),Cu2+去除率最高,達(dá)到51.41%,吸附量為51.41mg/g。凈水廠干化鋁污泥中的有機(jī)質(zhì)成分導(dǎo)致污泥具有發(fā)達(dá)的微孔結(jié)構(gòu),且比表面積較大。隨著污泥投加量的增加,吸附點(diǎn)位的數(shù)量和表面積也在同步增加,因此對重金屬的去除率不斷升高,這一效果對于Pb2+的吸附尤為明顯。隨著污泥投加量的增加,污泥對Pb2+和Cu2+的吸附量逐漸減小,原因可能是隨著污泥投加量的增加,吸附點(diǎn)位之間重疊和聚合,使得單位質(zhì)量污泥的有效表面積減小,造成吸附容量有所下降。本研究中,污泥對重金屬吸附容量較大的原因可能是所用污泥含有PAC和PAM。有研究表明,無機(jī)混凝劑PAC與PAM協(xié)同使用時(shí),無機(jī)混凝劑的靜電力作用和PAM的橋聯(lián)吸附作用,使得水中形成的絮團(tuán)顆粒間距較小,絮團(tuán)體積大且密實(shí),從而增強(qiáng)了對水中重金屬的吸附效果。
2.2 pH對吸附效果的影響
在Pb2+和Cu2+質(zhì)量濃度分別為160、100mg/L,干化鋁污泥投加量為0.10g,吸附時(shí)間為6h的條件下,考察pH對吸附效果的影響,結(jié)果如圖2所示。
由圖2可以看出,隨著溶液pH的升高,Pb2+和Cu2+去除率及其吸附容量均增加。當(dāng)pH達(dá)到9.0時(shí),Pb2+去除率達(dá)到98.17%,吸附量為157.07mg/g。Cu2+去除率達(dá)到98.24%,吸附量為98.24mg/g。溶液pH較低時(shí),在污泥表面會(huì)發(fā)生鋁氫氧化物的質(zhì)子化作用,污泥表面集聚了大量的H+,其會(huì)與溶液中的Pb2+和Cu2+發(fā)生靜電排斥作用,阻礙Pb2+和Cu2+在污泥表面的吸附。當(dāng)pH逐漸升高時(shí),溶液中H+濃度隨之降低,污泥表面逐漸去質(zhì)子化,表面正電荷逐漸減少,負(fù)電荷增加,與Pb2+和Cu2+之間的靜電吸引增強(qiáng)。另外,當(dāng)pH升高到一定程度后,Pb2+和Cu2+與溶液中的OH-會(huì)生成氫氧化物沉淀,導(dǎo)致去除效果增強(qiáng)。
2.3 Pb2+和Cu2+初始濃度對吸附效果的影響
在干化鋁污泥投加量為0.10g,Pb2+和Cu2+溶液pH分別為5和4,吸附時(shí)間為6h的條件下,考察初始Pb2+、Cu2+濃度對吸附效果的影響,結(jié)果見圖3。
由圖3可知,隨著Pb2+和Cu2+初始濃度的增大,Pb2+和Cu2+去除率降低。由于干化鋁污泥投加量保持恒定,吸附點(diǎn)位的數(shù)量即保持不變,當(dāng)Pb2+和Cu2+初始濃度較高時(shí),吸附點(diǎn)位不足,導(dǎo)致Pb2+和Cu2+去除率下降。隨著Pb2+和Cu2+初始濃度的增大,吸附量則呈先快速增加后增速減緩的變化趨勢。初始濃度是克服Pb2+和Cu2+在液相和固相之間的傳質(zhì)阻力的驅(qū)動(dòng)力,當(dāng)Pb2+和Cu2+初始濃度較高時(shí),Pb2+和Cu2+在溶液中和污泥表面的濃度差較大,促進(jìn)了溶液中的Pb2+和Cu2+向污泥表面移動(dòng),導(dǎo)致單位質(zhì)量污泥的吸附量增大。
2.4 吸附等溫線
在干化鋁污泥投加量為0.10g,初始Pb2+質(zhì)量濃度分別為120、160、200、260、380mg/L,初始Cu2+質(zhì)量濃度分別為60、80、100、120、140mg/L,Pb2+和Cu2+溶液pH分別為5和4,溫度分別為20、30℃,吸附時(shí)間為6h的條件下進(jìn)行吸附試驗(yàn),并對試驗(yàn)數(shù)據(jù)分別采用Langmuir和Freundlich吸附等溫線進(jìn)行擬合,擬合的相關(guān)參數(shù)見表1。
由表1可知,干化鋁污泥對Pb2+和Cu2+的吸附更符合Langmuir方程,這表明干化鋁污泥對Pb2+和Cu2+的吸附為單層吸附,且干化鋁污泥表面吸附點(diǎn)位分布較均勻。干化鋁污泥對水中Pb2+和Cu2+的最大吸附量(qm)大小±次為Pb2+>Cu2+,且qm隨著溫度的升高而增加,說明干化鋁污泥對Pb2+和Cu2+的吸附為吸熱反應(yīng)。
2.5 吸附動(dòng)力學(xué)
在Pb2+和Cu2+質(zhì)量濃度分別為160、100mg/L,干化鋁污泥投加量為0.10g,Pb2+和Cu2+溶液pH分別為5和4,吸附時(shí)間為6h的條件下,考察吸附量隨時(shí)間的變化,結(jié)果如圖4所示。采用Lagergren準(zhǔn)一級動(dòng)力學(xué)模型和準(zhǔn)二級動(dòng)力學(xué)模型對試驗(yàn)數(shù)據(jù)進(jìn)行擬合,相關(guān)參數(shù)見表2。
由圖4可知,在0~2h時(shí),干化鋁污泥對水中Pb2+和Cu2+的吸附速度非???,2h后基本達(dá)到吸附平衡。平衡時(shí)Pb2+的吸附量為138.20mg/g,Cu2+的吸附量為56.76mg/g。由表2可以看出,準(zhǔn)二級動(dòng)力學(xué)模型能夠更準(zhǔn)確地描述干化鋁污泥對Pb2+和Cu2+的吸附,這說明干化鋁污泥對Pb2+和Cu2+的吸附以化學(xué)吸附為主。經(jīng)計(jì)算驗(yàn)證,其平衡吸附量的理論值(qe)更接近試驗(yàn)值。準(zhǔn)二級動(dòng)力學(xué)模型是基于假定吸附速率受化學(xué)吸附機(jī)理的控制,涉及吸附劑與吸附質(zhì)之間的電子共用或者電子轉(zhuǎn)移。因此,干化鋁污泥對Pb2+和Cu2+的吸附過程可以分為3個(gè)步驟:(1)Pb2+和Cu2+由溶液經(jīng)液膜擴(kuò)散至污泥顆粒表面。(2)Pb2+和Cu2+由污泥顆粒表面向污泥顆粒內(nèi)部擴(kuò)散。(3)Pb2+和Cu2+在污泥顆粒內(nèi)活性點(diǎn)位上發(fā)生化學(xué)反應(yīng)。
2.6 吸附熱力學(xué)
在Pb2+和Cu2+質(zhì)量濃度分別為160、100mg/L,干化鋁污泥投加量為0.10g,Pb2+和Cu2+溶液pH分別為5和4,溫度分別為20、30、40℃,吸附時(shí)間為6h的條件下進(jìn)行吸附試驗(yàn),并根據(jù)試驗(yàn)結(jié)果進(jìn)行熱力學(xué)分析,相關(guān)參數(shù)見表3。
由表3可以看出,分配系數(shù)Kd隨著溫度的升高而增大,表明溫度的升高有利于吸附反應(yīng)的進(jìn)行。在試驗(yàn)溫度條件下,污泥對Pb2+吸附的△Gθ為-26.24~-21.16kJ/mol,污泥對Cu2+吸附的△Gθ為-21.94~-17.24kJ/mol,且都隨著溫度的增加而逐漸降低,表明干化鋁污泥對Pb2+和Cu2+的吸附過程能夠自發(fā)進(jìn)行?!鱄θ>0,表明吸附過程是吸熱反應(yīng)?!鱏θ>0,表明吸附反應(yīng)是一個(gè)熵增的反應(yīng),即吸附反應(yīng)增加了污泥與重金屬溶液之間固-液面的無序性。
三、結(jié)論
(1)凈水廠干化鋁污泥對重金屬Pb2+和Cu2+具有良好的吸附性能,Pb2+和Cu2+去除率隨污泥投加量和pH的增加而升高,隨初始重金屬濃度的增加而降低。
(2)干化鋁污泥對Pb2+和Cu2+的吸附更符合Langmuir吸附等溫模型,qm大小±次為Pb2+>Cu2+,且qm隨著溫度的升高而增加,說明干化鋁污泥對Pb2+和Cu2+的吸附過程為吸熱反應(yīng)。
(3)干化鋁污泥對Pb2+和Cu2+的吸附動(dòng)力學(xué)過程可用準(zhǔn)二級動(dòng)力學(xué)模型來描述,吸附過程可分為液膜擴(kuò)散、顆粒內(nèi)擴(kuò)散、化學(xué)吸附反應(yīng)。
(4)吸附熱力學(xué)研究表明,干化鋁污泥對Pb2+和Cu2+的吸附為自發(fā)、吸熱、熵增的反應(yīng)。
(5)干化鋁污泥對Pb2+和Cu2+具有較大的吸附容量,且吸附速度較快,可用作含重金屬離子廢水的吸附劑。(來源:太原理工大學(xué)環(huán)境科學(xué)與工程學(xué)院)
聲明:素材來源于網(wǎng)絡(luò)如有侵權(quán)聯(lián)系刪除。