廢水生物脫氮技術(shù)
1、水體中氮元素的危害
近幾年以來,人類的生產(chǎn)活動一直不斷的向水體排放大量的含氮化合物,給地球水環(huán)境造成了極大的污染。含氮污染物分為無機氮以及有機氮。無機氮:NH4+-N、NO3--N和NO2--N,主要來自城市生活污水經(jīng)污水處理廠的常規(guī)工藝處理之后排放的廢水、冶金工業(yè)排放的焦化廢水以及制肥廠產(chǎn)生的工業(yè)廢水。有機氮:有機堿、尿素、蛋白質(zhì)等,主要來自食品飲料加工行業(yè)、印染工業(yè)、制革工業(yè)及農(nóng)業(yè)生產(chǎn)過程中農(nóng)藥的流失以及牲畜的排泄物。氮污染的危害如下:
1.1 水體富營養(yǎng)化
植物和藻類的生長離不開營養(yǎng)物質(zhì)。在自然水體中,它們的生長經(jīng)常會受到氮元素和磷元素的限制。當?shù)仉S著污水的排入而不斷進入水體,就會引起水體的富營養(yǎng),導致水生植物以及藻類過度繁殖,然后因此產(chǎn)生一系列的不良后果。
(1)一方面,某些藻類自身帶的腥味就能使水質(zhì)變惡劣并使水體腥臭難聞;另一方面,某些藻類本身含有的蛋白質(zhì)毒素就會在水生物體內(nèi)積累,并經(jīng)過食物鏈危害人類的健康,更甚導致人中毒。
(2)水生植物以及藻類大量的繁殖,覆蓋水體,從而極大的影響江河湖泊的觀賞價值。
(3)如果以富營養(yǎng)化的水體作為水源,藻類就會堵塞住自來水廠的濾池影響生產(chǎn);其含有的毒素和氣味物質(zhì)會使飲用水的質(zhì)量受到影響。
根據(jù)資料,2011年我國地表水污染勢態(tài)嚴重,NH4+-N是黃河水系、長江水系、珠江水系、遼河水系主要污染指標的其中之一,主要的湖泊、水庫等富營養(yǎng)化問題非常嚴重。因為富營養(yǎng)化后水體溶氧量會減少,藻類會加速繁殖,導致水體變黑發(fā)臭,致使水體中魚、蝦等水產(chǎn)的正常繁殖和生長遭受影響,就會降低江河湖泊等的觀賞性和利用價值。
1.2 威脅人類和水生動物的健康
水體中氮污染會給人類和水生生物的健康產(chǎn)生危害。一方面,因為水體中的亞硝酸鹽會與人和動物血液中具有氧氣傳送功能的血紅蛋白反應,將血紅蛋白分子中的Fe2+氧化成Fe3+,抑制了氧的傳輸能力,導致組織缺氧、神經(jīng)麻痹乃至窒息死亡。水體里的硝酸鹽如果由于硝酸鹽還原菌的作用生成亞硝酸鹽或與胺、酚氨、氰胺等物質(zhì)產(chǎn)生共同作用從而形成高度“三致”(致癌、致畸變、致突變)物質(zhì),對人類的健康造成嚴重影響。另一方面,富營養(yǎng)化導致藻類急劇繁殖,某些藻類自身的毒素在水產(chǎn)體內(nèi)富集后,會經(jīng)過食物鏈導致人類中毒。
1.3 增加水處理成本
如果用Cl2來處理水體中的NH4+-N,NH4+-N每增加1g,Cl2量則需增加8~10g。若利用其他化學法處理,必然會增加相應化學試劑的投加量。若果氨與含銅成分的設備相接觸,會與銅表面的純化層形成銅氨絡離子,從而加快設備的腐燭速度,造成經(jīng)濟上的損失。
2、生物脫氮技術(shù)概述
自上世紀60年代起,陸陸續(xù)續(xù)產(chǎn)生了許多有效的污水脫氮的方法,其中有化學中和法、化學沉淀法、氨空氣吹脫法、蒸汽汽提法、選擇性離子交換法、折點氯化法等的物化法和生物硝化反硝化脫氮的生物脫氮法。物化脫氮法工藝繁復、資金投入大,以至于很難推廣投產(chǎn),生物脫氮技術(shù)的適用范圍最廣,成本及運轉(zhuǎn)投入最低,操作簡便也不會產(chǎn)生再次污染,污水達標排放可能性強,所以更加受到青睞。目前,生物脫氮技術(shù)主要有:
2.1 硝化反硝化脫氮工藝
傳統(tǒng)的硝化反硝化脫氮工藝通過硝化過程使氨氮轉(zhuǎn)化為NO3--N,然后通過反硝化過程使NO3--N還原為N2,以達到降低處理水質(zhì)中總氮質(zhì)量濃度的目的。
硝化反應的亞硝酸化和硝酸化兩個階段是由不同的微生物來完成的,硝化反應的亞硝酸化階段主要是由氨氧化菌完成,主要有Nitrosomonas、Nitrosospira、Nitrosococcu等,發(fā)生的亞硝化反應為:
硝化反應的硝酸化階段主要是由亞硝酸氧化菌完成,主要有Nitrobacter、Nitrospira等,發(fā)生的硝酸化反應為:
而如果是短程硝化反硝化,氮的轉(zhuǎn)化過程為:NH4+→HNO2→N2。NO2-不再轉(zhuǎn)化為NO3-而直接轉(zhuǎn)化為N2,從而實現(xiàn)對污水中氮的去除。然而在實際應用或已有研究中發(fā)現(xiàn)NO2-很容易被氧化變成NO3-,這就難以實現(xiàn)短程硝化反硝化。
2.2 同步硝化反硝化技術(shù)
同步硝化反硝化過程是指在沒有特殊單獨設置缺氧區(qū)的活性污泥法處理系統(tǒng)內(nèi)TN被大量去除的過程。對該工藝的解釋主要有兩種:一是裝置中DO分布不均理論,該理論認為裝置中在不同空間和不同時間點上充氧不平均,混合不勻稱,裝置內(nèi)有不同部分的缺氧區(qū)以及好氧區(qū),這使得硝化以及反硝化作用能實現(xiàn)一起進行;二是缺氧微環(huán)境理論,解釋說明了在生物絮體顆粒尺寸足夠大的條件下,從絮體表面到它內(nèi)核的不同層面上,氧的傳輸?shù)玫阶璧K,以至于氧的含量分布不平均,微生物絮體的外層氧的含量較高,是因為好氧硝化菌在硝化反應的過程中,里面含量較低而形成缺氧區(qū)域,大部分是為反硝化菌進行反硝化反應,這樣硝化和反硝化就可以同時進行。
同步硝化反硝化有如下優(yōu)點:
(1)減少反應器體積,投資小;
(2)pH值處于7左右,所以不用另外投加酸或者堿,此情況對硝化細菌和反硝化細菌發(fā)揮作用有幫助。
2.3 短程硝化-反硝化脫氮技術(shù)
硝化-反硝化生物脫氮技術(shù)相較于傳統(tǒng)的脫氮方法,本質(zhì)上的區(qū)別是在硝化階段只將NH4+-N氧化為亞硝酸鹽氮,接著就直接進入反硝化階段,技術(shù)重點是必須妥當?shù)木S持NO2--N的積累,經(jīng)短程過很多實驗研究,研究人員最終找到了能夠通過控制pH實現(xiàn)NO2--N的累積。國內(nèi)高大文等在28℃的情況中啟動裝置脫氮,通過調(diào)節(jié)裝置里初始pH到7.8~8.7之間累積NO2--N,不到一個月NO2--N的累積率達到90%左右,成功實現(xiàn)了短程硝化反硝化生物脫氮工藝的正常運轉(zhuǎn)。
硝化生物脫氮工藝的正常運轉(zhuǎn)。此工藝在曝氣過程就能節(jié)省1/4因供氧而用掉的能源,在反硝化階段能夠省下40%的有機碳源,同時還有產(chǎn)生污泥少和占地面積小等優(yōu)勢,相較于老舊的生物脫氮工藝有利方面明顯,在污水脫氮中得到大量應用。
2.4 好氧反硝化脫氮技術(shù)
對好氧反硝化生物脫氮的機制研究現(xiàn)在有微環(huán)境理論以及生物學理論兩種理論。如今,微環(huán)境理論得到普遍的認可。微環(huán)境理論重點是站在物理學層面進行說明。因為受制于氧擴散作用,在微生物絮體內(nèi)形成了DO梯度,以至于總體環(huán)境為好氧,而絮體內(nèi)部的小環(huán)境為厭氧的反硝化。微生物絮體外層DO濃度偏高,主要是好氧異養(yǎng)菌、好氧硝化菌;深入絮體內(nèi)層,氧傳輸受限,同時有機物氧化、硝化作用需要許多氧,絮體內(nèi)部變成了缺氧區(qū),占優(yōu)菌種為反硝化菌。恰恰因為微生物絮體內(nèi)缺氧微環(huán)境的形成,所以引起好氧反硝化的進行。把曝氣池里DO保持在低水平狀態(tài),就有希望能使缺氧或者厭氧微環(huán)境比重上升,最終使反硝化作用得以實現(xiàn)。
2.5 CRI系統(tǒng)脫氮技術(shù)
人工快速滲濾系統(tǒng)(簡稱CRI系統(tǒng))是一種新型污水生態(tài)治理技術(shù),是建立在快滲系統(tǒng)(RI)的基礎(chǔ)上,CRI系統(tǒng)是針對受污染的地表水和小城鎮(zhèn)生活污水的污水處理生態(tài)工程技術(shù),正成為國內(nèi)研究和應用的熱點。CRI系統(tǒng)根據(jù)滲濾介質(zhì)以及介質(zhì)上繁殖的微生物對水中污染物質(zhì)的吸附、截留以及分解,達到污水凈化的效果,CRI系統(tǒng)特殊的結(jié)構(gòu)以及進水形式,因此滲濾介質(zhì)表面的微生物菌相多種多樣,根據(jù)進水周期的改變,滲濾介質(zhì)表面兼具好氧、兼氧、厭氧的功能,實現(xiàn)對污水的處理,同時,在處理過程中完全不用添加藥劑,也不會用到機械曝氣等大耗能設備,很大程度減少處理設施的投資和運行資金,為低耗高效的污水生態(tài)處理技術(shù)。具有占地面積相對傳統(tǒng)土地處理技術(shù)較小,工藝過程相對簡單,投入資金低,運行成本低等特點,對我國小城鎮(zhèn)生活廢水和受到污染的地表水處理具有明顯優(yōu)勢和重要的應用價值。
3、生物脫氮技術(shù)存在的主要問題及展望
目前,生物脫氮技術(shù)大多相關(guān)機理研究還不夠深入,大多工藝技術(shù)依然處于實驗室。在未來的發(fā)展過程中,應重點注意以下幾個方面:
(1)傳統(tǒng)的硝化反硝化脫氮工藝在實際應用或已有研究中發(fā)現(xiàn)NO2-很容易被氧化變成NO3-,這就難以實現(xiàn)短程硝化反硝化。因此,要想實現(xiàn)短程硝化反硝化NO2-直接轉(zhuǎn)化為N2就必須使CRI系統(tǒng)內(nèi)維持較高濃度的NO2-,如何控制各個因素使NO2-較高濃度的累積成為研究的重點。
(2)現(xiàn)今在好氧反硝化的應用上,不管是根據(jù)宏觀環(huán)境理論或者是微環(huán)境理論來說明,依然無法丟掉傳統(tǒng)的好氧厭氧生物脫氮模型,往往所講的反硝化,本質(zhì)中依然是缺氧微環(huán)境中的反硝化,難以稱為絕對意義上的好氧反硝化,無法展現(xiàn)出好氧反硝化工藝的優(yōu)點。另外,現(xiàn)今篩選出的好氧反硝化菌大多數(shù)功效低下,往往只能在DO在2mg/L之下的情況中表現(xiàn)出反硝化活性。在我國,好氧反硝化的研究剛剛起步,但是優(yōu)勢明顯,肯定會成為未來污水生物脫氮的研究重點。
(3)CRI系統(tǒng)脫氮技術(shù)對總氮(TN)、總磷(TP)的去除率較低,對TN的去除率為10%~30%,對TP的去除率為30%~55%,不能達標排放。若基于此研究CRI系統(tǒng)的好氧反硝化機理,研究成果能豐富和拓展人工快速滲濾系統(tǒng)生態(tài)工程處理污水技術(shù),具有十分重要的學術(shù)價值和科學意義。(來源:四川省工業(yè)環(huán)境監(jiān)測研究院,四川省川工環(huán)院環(huán)??萍加邢挢熑喂?
聲明:素材來源于網(wǎng)絡如有侵權(quán)聯(lián)系刪除。