免费久久99精品国产自在现,初摄人妻丰满五十路中文无码,一本大道无码人妻精品专区,日产一区二区美女在线观看,亚洲色精品一区二区三区不卡
制藥廢水處理系統(tǒng)中抗生素抗性基因的研究進展

制藥廢水處理系統(tǒng)中抗生素抗性基因的研究進展

2022-05-19 10:18:23 5

中國是抗生素生產(chǎn)與使用大國,近年來抗生素排入環(huán)境引發(fā)的問題逐漸得到重視。長時間低劑量的抗生素環(huán)境暴露會加速和誘導抗生素抗性基因(ARG)的產(chǎn)生。

而ARG是抗性菌(ARB)產(chǎn)生耐藥性的根本原因,即使ARB死亡,在脫氧核苷酸酶的保護下,攜帶ARG的裸露DNA仍會長期存在,進而威脅生態(tài)環(huán)境和人類健康安全。

在抗生素制藥廢水生物處理過程中,高濃度的殘留抗生素會對微生物產(chǎn)生抑制,降低生物處理效率,同時對微生物的種群結構和功能造成負面影響。

微生物在抗生素選擇壓力下也會篩選出自身攜帶ARG、通過基因突變產(chǎn)生ARG或通過垂直/水平轉移獲得ARG的ARB。

有報道指出,抗生素制藥廢水中的抗生素和重金屬等有利于ARB篩選,并加速ARG的水平轉移。因此,抗生素制藥廢水處理系統(tǒng)是ARG貯存、擴增、傳播及削減的重要場所。

筆者系統(tǒng)總結了抗生素制藥廢水處理系統(tǒng)中ARG的形成機制、分布情況、去除機制及效果,從ARG削減角度出發(fā),展望抗生素制藥廢水處理工藝的優(yōu)化方向,以期提高ARG去除效果從而減少其環(huán)境危害。

1 研究情況

基于中國知網(wǎng)和Web of Science數(shù)據(jù)庫,分別以“抗性基因”+“制藥/抗生素廢水”和“antibiotic resistance gene”+“pharmaceutical/antibiotic wastewater”為主題,檢索2010年至今的全部文獻,再通過人工核查方式篩選出46篇研究性論文。

其中,年度論文數(shù)量在1~8篇,整體呈上升趨勢。我國在該領域的論文發(fā)表數(shù)量最多(40篇),主要是由于我國抗生素產(chǎn)量居世界首位,制藥廢水抗生素環(huán)境排放問題較為突出,促使科研人員加大研究力度。

近60%的論文是關于實際制藥廢水處理系統(tǒng)中ARG的研究,廢水中普遍含有多種抗生素;其余為實驗室研究,多采用含單一抗生素的模擬配水。

研究內(nèi)容主要集中在:

(1)制藥廢水處理系統(tǒng)中ARG的分布規(guī)律及增殖擴散機制;(2)制藥廢水處理系統(tǒng)中各單元對ARG的去除效果及運行參數(shù)的優(yōu)化;(3)制藥廢水處理系統(tǒng)中影響ARG豐度和去除效率的因素。

2 制藥廢水處理系統(tǒng)中ARG的增殖與擴散

制藥廢水處理廠多采用生物處理為主體工藝,微生物長時間暴露在高濃度殘留抗生素環(huán)境中往往誘導產(chǎn)生大量ARG。經(jīng)生物處理后的廢水和廢渣排入環(huán)境,最終危害生態(tài)環(huán)境和人類健康。制藥廢水排放后引起的環(huán)境危害如圖1所示。

污水處理設備__全康環(huán)保QKEP

鑒于此,制藥廢水處理系統(tǒng)中ARG及其轉化歸趨的相關研究日益增多。ARG可以通過垂直和水平轉移2種途徑擴散。水平基因轉移是ARG的主要擴散方式,主要機制包括:接合,轉導,轉化,如圖2所示。

制藥廢水生物處理系統(tǒng)中高密度的細菌提供了大量可移動遺傳元件(如質(zhì)粒、轉座子和整合子),位于其上的ARG很容易隨其在同源或不同來源的細菌之間水平轉移擴散。探究抗生素制藥廢水處理系統(tǒng)中ARG分布特征及其影響因素十分重要。

污水處理設備__全康環(huán)保QKEP

3 抗生素制藥廢水處理系統(tǒng)中ARG分布特征及其影響因素

3.1 廢水處理單元

制藥廢水處理系統(tǒng)中,大部分ARG的絕對豐度(單位體積水相或單位質(zhì)量泥相中的ARG拷貝數(shù))經(jīng)過生物處理單元后上升,經(jīng)過物化處理單元后下降,不同處理工藝對ARG的影響存在差異。

姚鵬城等考察了以抗生素為主導行業(yè)的某化工園區(qū)廢水處理廠各處理單元,發(fā)現(xiàn)廢水中ARG絕對豐度在混凝沉淀后下降0.16~0.43個數(shù)量級,在A/A/O工藝曝氣池中上升0.16~2.34個數(shù)量級,在二沉池出水中下降0.20~1.37個數(shù)量級,在Fenton處理出水中下降0.25~1.74個數(shù)量級。

此外,曝氣池污泥中ARG絕對豐度比剩余污泥低約1個數(shù)量級,顯示通過二沉池泥水分離將含ARG的ARB轉移至污泥相是水相ARG削減的重要途徑。

3.2 抗生素種類與濃度

與普通污水處理系統(tǒng)相比,制藥廢水處理系統(tǒng)在殘留抗生素的選擇壓力下,會誘導出更多的ARG。

抗生素廢水處理系統(tǒng)出水中的ARG豐度比市政污水和非抗生素廢水處理系統(tǒng)的高幾倍,有的甚至高l~4個數(shù)量級。制藥廢水中ARG亞型的相對豐度(即同一樣品中ARG拷貝數(shù)占總細菌16S rRNA拷貝數(shù)的比例)與相應殘留抗生素濃度之間存在一定正相關性。

此外,抗生素種類也會影響抗性基因的亞型和豐度。單一抗生素制藥廢水中抗生素對相應亞種ARG的誘導擴增作用強于對其他亞型ARG的作用?;旌闲涂股刂扑帍U水中ARG的亞型和豐度均多于單一型抗生素制藥廢水。當廢水中某種抗生素濃度越高,相應類型的ARG豐度將高于其他類型的ARG豐度。

3.3 微生物濃度

制藥廢水處理系統(tǒng)中抗生素的選擇壓力并不是導致ARG在體系中傳播的唯一因素,ARG豐度與微生物濃度具有相關性,ARG豐度的變化也可能是微生物增殖或去除的結果。

有研究表明,制藥廢水系統(tǒng)中部分ARG豐度與16S rRNA(作為總細菌的替代物)豐度或總抗生素濃度呈顯著正相關,并進一步分析得出與抗生素濃度相比,微生物濃度是影響ARG豐度更為重要的因素。

瞿文超根據(jù)6個制藥廢水處理系統(tǒng)中16S rRNA與ARG的正相關性分析,同樣得出影響ARG豐度的關鍵因素是微生物濃度的結論,并提出可通過降低出水中微生物濃度對出水ARG進行控制。

此外, Lingwei MENG等的研究顯示不同ARG均分別與不同物種呈顯著正相關,表明制藥廢水處理系統(tǒng)中ARG的豐度及種類與微生物種群結構有關。

3.4 環(huán)境條件

雖然很難在環(huán)境條件與ARG豐度之間建立準確的關系,但有研究顯示DO、pH和TOC等環(huán)境條件可能會影響制藥廢水廠中ARG的豐度和分布規(guī)律。

Mei TANG等研究發(fā)現(xiàn)好氧污泥中檢測到的ARG總相對豐度和移動遺傳元件相對豐度均比厭氧污泥的高。

Linxuan LI等研究兩段好氧工藝處理制藥廢水各單元中ARG與環(huán)境條件的關系發(fā)現(xiàn),sul1和sul2與TOC顯著相關,tetB、sul1、sul2、gyrA、16S rRNA拷貝數(shù)與pH呈正相關,tetW與TN、DO呈正相關。因此,研究ARG與各種環(huán)境條件之間的關系,進而通過環(huán)境條件調(diào)控來提高制藥廢水中ARG的去除效果是今后重要的研究方向之一。

4 處理工藝對ARG的去除效果

4.1 生物處理工藝

制藥廢水含有高濃度有機污染物,一般以生物處理作為主體工藝。在生物處理過程中,抗生素與微生物共存往往會促進某些ARB和ARG的增殖和擴散,有時也會發(fā)生某些ARG削減的現(xiàn)象。

表1列出了曝氣生物濾池(BAF)、序批式活性污泥法(SBR)、膜生物反應器(MBR)、上流式厭氧污泥床(UASB)、膨脹顆粒污泥床(EGSB)、A/O和A/A/O等典型生物處理工藝中ARG的變化情況。此外,上述工藝的不同組合也常應用于制藥廢水的處理。

污水處理設備__全康環(huán)保QKEP

表1中,活性污泥工藝單元均出現(xiàn)促進ARG增殖的現(xiàn)象,可能是由于污泥在水中的懸浮量增長,導致出水中隨未沉降污泥流出的ARG絕對豐度較高。

覃彩霞等采用調(diào)節(jié)池—A/A/O—二沉池組合工藝處理螺旋霉素廢水,總異養(yǎng)菌和腸球菌的數(shù)量分別降低1.6~2.1和3.7個數(shù)量級,但無法削減耐藥菌的比例,且ARG豐度呈現(xiàn)明顯的季節(jié)性變化特征。

Lingwei MENG等用2個EGSB反應器(E1、E2)分別處理β-內(nèi)酰胺類制藥廢水和普通廢水。在E1廢水中頭孢氨芐的誘導作用下,E1出水中各目標ARG的總濃度均高于E2,且E1中移動元件的平均豐度均高于E2。

羅曉等發(fā)現(xiàn)采用曝氣活性污泥法處理頭孢類抗生素廢水的2個處理廠的各處理單元均檢測出β-內(nèi)酰胺類ARG,且在一級曝氣池中的絕對豐度最高。

生物膜法中的微生物附著在載體表面生長,廢水處理過程殘留在出水中的微生物較活性污泥法的少,因此出水中ARB和ARG豐度相對較低。

Wenchao ZHAI等對2個制藥廢水處理廠進行研究,其中A廠采用SBR和生物接觸氧化法,B廠采用傳統(tǒng)活性污泥法,發(fā)現(xiàn)B廠對ARG增殖的促進作用更為明顯。

此外,ARG在上述2個制藥廢水廠的處理過程中都會增殖擴散,主要原因在于生物處理系統(tǒng)內(nèi)的微生物總量相比進水顯著增加,即傳統(tǒng)生物處理過程是制藥廢水中ARG增殖的重要途徑。

活性污泥與微/超濾膜分離耦合而成的MBR工藝以出水水質(zhì)好、容積負荷高、占地面積小、抗沖擊能力強和完全截留污泥絮體等特點,在制藥廢水處理領域具有良好的應用潛力。MBR中的膜可以高效截留廢水中的膠體、顆粒物、懸浮物及微生物代謝物等,其中含有大量抗生素抗性基因和抗性菌。

Jilu WANG等研究發(fā)現(xiàn)5座大型制藥廢水處理廠的 MBR工藝對各類ARG的去除率高達99.8%。原因在于膜組件可完全截留污泥絮體,使出水中的微生物豐度較傳統(tǒng)工藝顯著降低,從而降低隨ARB流出的ARG豐度。膜污染會增加膜組件的截留精度,直接截留部分攜帶ARG的可移動遺傳元件,從而增強對ARG的去除效果。

覃彩霞等采用MBR處理螺旋霉素制藥廢水,發(fā)現(xiàn)水力停留時間(HRT)增加后廢水中異養(yǎng)菌與腸球菌的去除率提高,ARG削減效果同步提升。表明延長HRT有助于MBR工藝去除螺旋霉素廢水中的ARB和ARG,進一步探索MBR工藝處理制藥廢水的最優(yōu)運行參數(shù)是一個重要研究方向。

此外,強化水解工藝可有效降低制藥廢水的抗菌活性,具有良好的預處理效果。研究發(fā)現(xiàn)在特定條件下,增強水解作用可以有效去除土霉素,提升抗菌效力。

4.2 物理化學處理工藝

制藥廢水中一般含有高濃度殘留抗生素、部分難生物降解有機物、氨氮等污染物,單一生物處理工藝很難處理達標,通常需要物理化學工藝進行預處理和/或深度處理。

M. M. MCCONNELL等研究發(fā)現(xiàn),二沉池將處理后的廢水與污泥分離后,污泥中的16S rRNA和ARG豐度遠高于水相,大部分ARG隨著ARB通過固液分離轉移到污泥中,導致出水中的ARG減少。

Wenchao ZHAI等發(fā)現(xiàn)脫水污泥中排出的ARG負荷是最終廢水的1~435倍,最終排放廢水中ARG絕對豐度僅占進水的0.03%~78.1%,而大多數(shù)ARG〔(2.65±0.43)×105~(4.27±0.03)×1010 mL-1〕轉移到脫水污泥中。

這與Jilu WANG等的研究結論相似,轉移到脫水污泥中的ARG總量比原進水高出7~308倍,比最終出水的ARG高16~638倍。

這種轉移不能從根本上解決ARG增殖和擴散的問題,將脫水污泥填埋后可能導致土壤微生物產(chǎn)生抗生素抗性,在環(huán)境中進一步污染擴散。因此,應重點研究制藥廢水污泥處理過程中削減ARG的方法。

任佳發(fā)現(xiàn)臭氧、熱水解作為厭氧消化的預處理工藝時,與直接厭氧消化相比,對制藥污泥ARG的控制效果均較好,且熱水解的效果優(yōu)于臭氧預處理。

高級氧化技術(AOP)可破壞細菌DNA的雙螺旋結構,從而有效減少出水中的ARG豐度。

Jie HOU等將UASB、A/O工藝分別與4種AOP工藝進行組合用于處理制藥廢水。結果表明,經(jīng)過UASB和A/O處理單元,廢水中所有ARG的豐度均顯著增加;經(jīng)過4種AOP工藝處理后,ARG豐度均下降。其中,UV和O3具有消除16S rRNA和ARG的潛力(降低0.8~1.6個數(shù)量級);Fenton和Fenton/UV是去除ARG的最佳AOPs,可使16S rRNA和ARG減少1.1~6.0個數(shù)量級,并能完全去除ermB和tetQ。

何瑞蘭研究發(fā)現(xiàn)O3、UV和Cl均能有效去除抗生素生產(chǎn)廢水中的ARB和ARG,去除ARB比去除純菌需要更大的消毒劑量和更長的反應時間。高級氧化技術去除制藥廢水中ARG和ARB有待進一步深入研究,以評估其效果與成本的可持續(xù)性。

5 結論與展望

抗生素制藥廢水是重要的抗生素、ARB和ARG排放源,在制藥廢水處理系統(tǒng)中將其有效去除是減少制藥廢水排放導致的抗生素污染的關鍵。

研究發(fā)現(xiàn),制藥廢水中殘留抗生素的濃度與種類會影響ARG的豐度和種類,ARG絕對豐度經(jīng)過生物處理單元后上升,經(jīng)過物理化學處理單元后下降。廢水中ARG的增加或去除可能是微生物增殖或去除的結果。

此外,不同處理工藝對制藥廢水中ARG的去除效果也不同,其中MBR工藝對制藥廢水中ARG的去除率可達99%以上,消毒及高級氧化工藝是徹底去除廢水中ARG的有效方法。

在達到常規(guī)出水指標的前提下,制藥廢水處理系統(tǒng)仍面臨著更好地去除ARG、將不同工藝組合以達到更好去除效果等問題,建議今后在以下方面開展重點研究。

(1)深入研究MBR工藝(好氧和厭氧)處理制藥廢水中ARG的去除效果及機理,探索MBR工藝去除ARG的最優(yōu)運行參數(shù)。

(2)深入研究消毒和高級氧化工藝對水相中ARG的削減效果及最優(yōu)工藝參數(shù),探索剩余污泥處理過程中削減ARG的有效方法。


聲明:素材來源于網(wǎng)絡如有侵權聯(lián)系刪除。


免费久久99精品国产自在现,初摄人妻丰满五十路中文无码,一本大道无码人妻精品专区,日产一区二区美女在线观看,亚洲色精品一区二区三区不卡